The proliferative potential of myeloma plasma cells manifest in the SCID-hu host.

نویسندگان

  • S Yaccoby
  • J Epstein
چکیده

The low proliferative activity of myeloma plasma cells prompted the notion that the clonotypic B cells that exist in the blood and bone marrow of all myeloma patients contain the proliferative myeloma cells (stem cell). We have exploited our severe combined immunodeficiency (SCID)-hu host system for primary myeloma to investigate whether myeloma plasma cells are capable of sustained proliferation. Purified CD38(++)CD45(-) plasma cells consistently grew and produced myeloma and its manifestations in SCID-hu hosts (8 of 9 experiments). In contrast, the plasma cell-depleted bone marrow cells from 6 patients did not grow or produce myeloma in SCID-hu hosts. Similarly, whereas plasma-cell containing blood cells from 4 patients grew and produced myeloma in hosts, neither the PC-depleted blood cells from 3 of the patients nor a blood specimen that did not contain plasma cells grew in SCID-hu hosts, regardless of their CD19-expressing cell contents. Also, in hosts injected with blood cells, although the myeloma cells were able to disseminate through the murine host system, they were only able to grow in the human bones within a human microenvironment and were not detectable in the murine blood or other organs. Interestingly, the circulating plasma cells appear to grow more avidly in the SCID-hu hosts than their bone marrow counterparts, suggesting that they represent a subpopulation of the plasma cells in the bone marrow. Although our studies clearly demonstrate the proliferative potential of myeloma plasma cells, they are suggestive, not conclusive, as to the existence of a preplasmacytic myeloma progenitor cell.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Myeloma Bone Marrow Mesenchymal Stromal Cells Inhibit CD8+ T Cell Function in a Process that May Implicate Fibroblast Activation Protein α

Background: Multiple myeloma (MM) is a malignant plasma cell proliferative disorder with limited immunotherapy treatment because of T cell dysfunction. Objective: To investigate the immunomodulatory function of bone marrow mesenchymal stromal cells (MM-BMSCs) on CD8+ T cells. Methods: Proliferation and cytotoxicity were detected by c...

متن کامل

Primary myeloma cells growing in SCID-hu mice: a model for studying the biology and treatment of myeloma and its manifestations.

Progress in unraveling the biology of myeloma has suffered from lack of an in vitro or in vivo system for reproducible growth of myeloma cells and development of disease manifestations. The SCID-hu mouse harbors a human microenvironment in the form of human fetal bone. Myeloma cells from the bone marrow of 80% of patients readily grew in the human environment of SCID-hu mice. Engraftment of mye...

متن کامل

Mouse Models as a Translational Platform for the Development of New Therapeutic Agents in Multiple Myeloma

Mouse models of multiple myeloma (MM) are basic tools for translational research and play a fundamental role in the development of new therapeutics against plasma cell malignancies. All available models, including transplantable murine tumors in syngenic mice, xenografts of established human cell lines in immunocompromised mice and transgenic models that mirror specific steps of MM pathogenesis...

متن کامل

Antimyeloma efficacy of thalidomide in the SCID-hu model.

To determine the mechanism of thalidomide's antimyeloma efficacy, we studied the drug's activity in our severe combined immunodeficiency-human (SCID-hu) host system for primary human myeloma. In this model, tumor cells interact with the human microenvironment to produce typical myeloma manifestations in the hosts, including stimulation of neoangiogenesis. Because mice are not able to metabolize...

متن کامل

Frequency of FLT3 ITD and FLT3 TKD Mutations in Multiple Myeloma Patients (A Case Control Study)

Background and Aims: Multiple myeloma is a malignant proliferation of plasma cells derived from a single clone. The tumor, its products and the host response lead to organ damages. Some factors that are responsible in its pathogenesis are recognized. As FMS like Tyrosine Kinase 3 receptor (FLT3) mutation has been proved as a determining factor in leukemic patients the goal of this study was to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 94 10  شماره 

صفحات  -

تاریخ انتشار 1999